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Abstract 

JPEG compression is extensively used in digital cameras, 
internet, and image databases. The amount of compression 
can be adjusted by scaling the quantization table or Q-
table. In many cases, an iterative process is used to achieve 
optimum compression having a smaller file size, but still 
visually lossless at the intended display and viewing 
distance. This process is very time consuming for large 
image databases since human observers are used to judge 
the image quality. 

We present an automatic method to achieve the 
optimum compression using a color visual difference 
model (CVDM). The CVDM output is a map of the visible 
differences between reference and distorted images. In 
order to use the model in automatic compression, a single 
number JPEG artifact score was derived from the visual 
difference map to be used as a merit function. A subjective 
experiment was conducted to find the best merit function 
for JPEG artifacts. The subjective experiment also derives 
an acceptance criterion for JPEG artifacts. We found that 
the 99-percentile provides the best correlation with the 
subjective results; thus it was used as the JPEG artifact 
score in the automatic compression. In the compression 
process, the compressed images were evaluated with the 
visual model. Based on the predicted artifact score, the 
selected Q-table was scaled up or down so that the artifact 
score was close to the acceptance criteria derived in the 
subjective experiment. 

Introduction 

All lossy image compression algorithms usually use 
quantization to tradeoff between file size and compressed 
image quality. For example, JPEG compression is 
extensively used in digital cameras, internet, and image 
databases. The amount of compression can be adjusted by 
scaling the quantization table or Q-table. A Q-table with 
larger values can lead to smaller file size, but more 
compression artifacts. In many cases, an iterative process 
involving image viewing and quantization adjustment is 
used to achieve optimum compression: having a smaller 
file size, but still visually lossless at the intended display 
and viewing distance. This process is very time consuming 
for large image databases since human observers are used 
to judge the image quality. The process is subjective and in 

many cases, since the display is not available, may not 
account for the display difference between the intended 
display (portable screen) and the observer’s display (most 
likely a computer monitor). 

The color visual difference model (CVDM)1 combines 
the multi-resolution and masking components of 
monochromatic visible difference predictor (VDP)2 and 
single channel CSF based S-CIELAB.3 The CVDM not 
only models the overall spatial frequency response of the 
visual system, but also masking between patterns of similar 
orientations and spatial frequencies We also improved the 
originally published CVDM in several ways.4 

In this paper, we described an automatic compression 
method in which the human observer is replaced with a 
color visual difference model and the human adjuster is 
replaced with an iterative algorithm that adjusts the 
parameters of compression to achieve best compression 
ratio while compression artifact is still below the threshold. 
The new method can also account for the display by the 
use of a display model. 

Color Visual Difference Model 

Key to the auto image compression is the color visual 
difference model which simulates the visual perception of 
human eye. It is a detection and appearance visual model 
that collapses to CIELAB for large patch color. It is 
calibrated so that the threshold occurs at ∆E = 1.0, 
regardless of frequency and local image background. 
Figure 1 shows the process to evaluate a JPEG compressed 
image. Both the original and compressed images are input 
to the visual model. Based on the viewing condition and 
display characteristics, the model calculates the visibility 
of the differences as a function of location in the image.  

In the previous implementations, the masking signal 
from a sinusoidal grating is also sinusoidal, thus there is no 
masking near the zero crossing. This causes false detection 
in certain areas. The VDP3 addressed this problem by first 
rectifying the masking signal and then low-pass filtering it 
by the next lowest DOM filter. However, there is no 
physiological basis for such action. We now use the more 
physiologically based method of using even and odd 
channels5 where the odd channel cortex filter has a π phase 
shift in II and III quadrants. Figure 2 shows the convolution 
kernel of the even and odd cortex filters. The outputs of 
even and odd filters add together in mean square sense.  
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The other changes to the model include an OTF in 
addition to the CSF, a modification of the low frequency 
attenuation of the CSF to better fit color patch data. 
Another key difference from the VDP model is that we 
now use the simpler L* nonlinearity rather than the local 
cone model, so that the results collapse to CIELAB for 
solid color patches.4 
 

 

 

Figure 1. JPEG evaluation using CVDM 

 

 

Figure 2. Convolution kernels of even and odd filters  

Psychophysical Experiment to  
Derive Error Metric 

We conducted a psychophysical experiment to establish the 
relationship between visual model output, which is a map, 
and a singular subjective quality per image. The 
experiment consists of two observer studies. The first one 
is a paired comparison experiment with reference. An 
observer sees three side by side images with the reference 
(original image) in the middle and two compressed images 

on the left and right. Observers are asked to pick the better 
image: left or right. A LCD display is used in the 
experiment. The display resolution is 90 dpi and visual 
distance was fixed at 16” (that was dictated by the product 
application—a Sharp Picture Dictionary model PW-
C5000). Four images were used with 4 repetitions and each 
image is compressed with five different levels resulting a 
total of 384 comparisons. Five observers participated the 
test, and the results were pooled to generate a matrix of 
preference matrix. A psychophysical scale is derived using 
Thurston’s law of comparative study.6 In the second part of 
the psychophysical experiment, we try to establish the 
acceptance criteria for compression artifacts. Two images 
are display on the screen side by side: one is the original 
image, and the other is the compressed image. Each 
observer was asked to judge whether the compressed image 
is acceptable.  
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Figure 3. Correlation between subjective scale and 99% 

 
 

We evaluated a few metrics such as root mean square 
(RMS), median, 90 percentile, and 99 percentile and found 
that the 99 percentile provide the best correlation with the 
subjective experiment, and thus it was used as an error 
metric for auto JPEG compression. Figure 3 shows the 
relationship between the 99 percentile from the visual 
difference map and subjective experiments for 5 
compression rates averaged over 4 images. Based on the 
acceptance experiment, we set the threshold (THD) to 1 ∆E 
unit, which is approximately the visual detection threshold. 
This threshold can be adjusted higher for applications that 
quality is not critical and storage is at premium. The 
threshold can also be adjusted lower for applications that 
quality is very critical, or the JPEG images may be viewed 
at a closer distance.  

In this description, we will use JPEG as an example 
compression technique. The same framework can be 
directly applied to other lossy compression techniques, 
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e.g., JPEG-2000. Figure 5 shows the flowchart of the auto 
JPEG compression process. For the compression of many 
images such as the database applications, this process is 
repeated for each image. In the JPEG compression process, 
an image was first compressed with a default compression 
ratio using several Q-tables. These Q-tables are optimized 
for different image types (e.g., text images, graphic 
images, cont-toned images, and etc.). The compressed 
images were evaluated with the visual model. The Q-table 
with the lowest predicted artifact score was chosen for that 
image. The selected Q-table was then scaled so that the 
artifact score (as predicted by the visual model) was close 
to the acceptance criteria derived in the subjective 
experiment. 

 

 
Figure 4. Flowchart of Auto JPEG Compression Process 

Q-Table Generation 
The quantization table (Q-table) is used to quantize 

discrete cosine transform (DCT) coefficients. Larger values 
in a Q-table cause smaller compressed file size, but larger 
compression artifacts. In most applications, quantization 
table is fixed. In our optimized compression, four Q-tables 
were generated using the human visual contrast sensitivity 
function (CSF) with 4 different viewing distances (11, 14, 
17, and 19 inches).7,8 The display resolution and MTF were 
also taken into consideration. Closer viewing distances 
yield flatter tables (since they are in the frequency 
domain), while further distances yield steeper tables in 

which the high order DCT coefficients are quantized more 
aggressively. We found that the best Q-table is not only 
viewing condition dependent, but also image dependent. 
This is because of the global level of masking in a given 
image. If an image has a high level of masking 
everywhere, then the thresholds are elevated everywhere to 
a near uniform level7,9-11 for busy images having uniform 
distributions of masking, a flat table will be best, though 
with much higher values than a table for visually lossless 
results at close distances. Fortunately, the close distance 
tables can coincidentally be used for very busy images, 
albeit with a different scale factor.  

Q-Table Optimization 
For each image to be compressed, all four Q-tables are 

used to compress the image to the same compression ratio. 
These compressed images are compared with the original 
using the visual model. The best Q-table is the one with the 
lowest artifact score and is chosen to compress the image. 

Optimization Process 
Once the optimal Q-table is chosen, the image is 

compressed with a scaled version of this Q-table. A scale 
factor (SF) is used to scale the Q-table, thus controlling the 
JPEG compression quality. The compressed image is 
evaluated using the visual model, and a visual error metric 
(E) is derived from the visual difference map. The visual 
error metric is compared to a pre-defined threshold (THD), 
and tolerance (TOL), which is around 5% of the threshold. 
If the error metric is greater than the threshold plus 
tolerance, the compressed image is not acceptable; thus the 
scale factor is reduced. If, on the other hand, the error 
metric is less than the threshold minus tolerance, the 
compression artifact is below the visual threshold at the 
specified display and viewing condition. We can compress 
more to further reduce the compressed image size by 
increasing scale factor. With the new scale factor, a new 
compressed image is generated. This new compressed 
image is then evaluated with the visual model to determine 
the quality, and, if the error metric is not within the 
threshold and tolerance, the scale factor is modified as 
before. After a few iterations, the visual error metric 
converges to the visual threshold within the specified 
tolerance. With this method, the compressed image is still 
visually lossless at the smallest possible file size. The 
compressed image is then saved and the next image in the 
database is processed.  

Conclusion 

We have presented a human visual model-based automatic 
compression algorithm that can select compression quality 
parameters to match the threshold of the human visual 
system and the image characteristics. It can save time 
(human observer) and improve the image quality. Key to 
the auto compression method is the color visual difference 
model. We also described improvements to the color visual 
difference model for more accurate masking prediction. 
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This method was successfully used to compress an 
image database of more than 10,000 images.  

We notice that 99% metric is more sensitive to ringing 
than blocking artifact, so we may modify the metric for 
future usage. One possibility is to have a spatial pooling 
stage in the detection map before applying the metric.4  
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